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GAUSSIAN RAY BUNDLES FOR MODELING 
HIGH-FREQUENCY PROPAGATION LOSS 
UNDER SHALLOW-WATER CONDITIONS 

1. INTRODUCTION 

This report introduces a range-dependent propagation loss model designed to support the 
simulation of high-frequency reverberation in shallow oceans. For simplicity, this discussion is 
confined toNx2D environments. That is, environmental quantities such as the sound speed and 
bottom depth vary along vertical (r, z) planes through the source and field points, and out-of- 
plane scattering is neglected. The model is based on Gaussian ray bundles of the form 

where ßo depends only on the source, /"includes losses due to volume attenuation and boundary 
reflections, zv is the depth along a central ray, pr is the horizontal slowness, and a, an effective 
standard deviation or half-beamwidth, is given by 

a = — max(Az,8/l). (2) 

Here, Az is the change in ray depth at constant range due to a change in source angle A 6b, and A 
is the wavelength at the field point. 

If Az > 8/1, a confines most of the energy to the region between adjacent rays, while the 8/1 
minimum aperture prevents the acoustic pressure from growing too large near caustics, where 

Az     n hm = 0. (3) 

More sophisticated caustic corrections are often difficult to apply to realistic ocean 
conditions due to the numerical instability of various parameters or the violation of basic 
assumptions. For example, Ludwig's (reference 1) uniform asymptotic expansion involving the 
Airy function Ai and its derivative Ai' applies to smooth caustics. There is a smooth transition 
between the oscillatory and damped behavior with large but finite values on the caustic itself. The 
expansion requires equation (3) to have a well-behaved first-order zero. This assumption is 
violated along rays that graze an ocean boundary because the limit in equation (3) fails to exist. 

Equation (1) is based on conservation laws and appears to be consistent with Fresnel 
volume ray tracing (reference 2). Equation (2), on the other hand, was discovered by accident 
during the development of a Gaussian beam model. 



A Gaussian beam (reference 3) is defined along a central ray by 

P(s, rf) = Ajc(s)/[rq(s)] x exp(-/« {T(S) + 0.^p(s) I q(s)]r}2}). (4) 

Again, r is the horizontal range, s is the arc length along the ray, 77 is the normal distance from the 
central ray, A is an arbitrary constant, co is the radian frequency, c(s) is the sound speed, and p(s) 
and q(s) are the beam curvature and beamwidth, respectively. The curvature and beamwidth 
satisfy a pair of ordinary differential equations that are integrated with the standard ray-tracing 
equations. 

Gaussian ray bundles are somewhat easier to determine than Gaussian beams since a is 
determined from adjacent rays at the field point, not by integrating differential equations. It is not 
known why the 8/t in equation (2) performs as well as it does. Hence, the bundles should be used 
with caution until a can be placed on a firmer foundation, or until another model can be shown to 
provide a practical solution at the high frequencies of interest. 

Several aspects of Gaussian ray bundles resemble the numerical integration of the one-way 
wide-angle Maslov-Chapman wavefield representation (reference 4). For example, transforming 
the Helmholtz equation from depth dependence to vertical slowness leads to a modified eikonal 
equation. The solution, a Legendre transform from depth to vertical slowness, serves as an 
algorithm, equation (31), to extrapolate ray bundle travel time to a field point. An important 
difference is that the present numerical integration of the pressure amplitude is based on power 
addition, not on coherent transforms. 

Hardy (reference 5) suggested that a Gaussian form involving an experimentally determined 
standard deviation could be used to treat caustics. Although critics argued that one would have 
to conduct a separate experiment for every case of interest, it now appears that the single 
expression, equation (2), is sufficient. This will be demonstrated by several heuristic arguments in 
section 2. 

Section 3 contains two propagation loss test cases. The first compares results with those of 
the Navy standards PE version 3.4 (reference 6) and ASTRAL version 4.2 (reference 7) at 25 and 
10 kHz for a classic convergence zone. Then, the more academic models EFEPE (reference 8) 
and OASES (reference 9) are used to provide propagation loss at 1000 Hz for a shallow-water 
environment. If Gaussian ray bundles compare well with these "standards" at the lower 
frequencies, they should perform well at the higher frequencies, since the increase in frequency 
only improves the high-frequency approximation invoked by ray theory. 

The ray segments used by the classical ray-tracing section are based on triangular sectors in 
which the inverse sound speed squared is a linear function of range and depth. The specific 
implementation, being somewhat different than previous implementations, is described in the 
appendix. 



2. GAUSSIAN RAY BUNDLES 

The original intent of this work was to evolve an TV x 2Z) ray-tracing program into a 
Gaussian beam model. Development by evolution often gives additional insight. In this instance, 
it led to Gaussian ray bundles. Since rigorous proofs are not currently available, the justification 
relies on heuristic arguments. This section begins with a brief discussion of classical ray theory as 
a vehicle to introduce the notation. Gaussian ray bundles are constructed from classical rays in a 
number of ways, four of which are described below. The basic technique applies to a benign 
environment in which there are sufficient classical rays of a desired ray type to form well-behaved 
differences. The second technique is a fallback procedure in case there is only one classical ray of 
a particular type in the region of interest. Virtual rays are defined by unfolding classical rays to 
model propagation in the vicinity of the ocean boundaries. The last technique modifies the basic 
formula to model propagation at short ranges. 

First consider the fan of« rays in figure 1. Parameters that describe the v-th ray are 
subscripted by ()v, while ()o refers to a point source with radian frequency co at (0, z0). 
Accordingly, P0 denotes the acoustic pressure at a reference distance r0 from the source. The v-th 
ray is launched with source angle 9vfi and crosses the field-point range r at depth zv and travel 
time Tv. 

The horizontal slowness and vertical slowness, 

prv = cos 9vlcv 

and 
pZtV = sm0v/cv 

(5) 

r 

z 
(0, z0) 

v-1 

'V 

■v+1 

Figure 1. Fan of Acoustic Rays Launched from a Point Source 



are defined in terms of the horizontal inclination angle 0V and the sound speed cv. Losses due to 
volume attenuation and boundary reflections are simulated by the pressure ratio rv and phase shift 
0V. Recall that the vertex velocity p~x

v is a ray invariant in range-independent environments. 

Typical Nx2D ray-tracing programs require two types of spatial interpolations to model 
realistic ocean conditions. The first provides environmental data at discrete ranges along a 
vertical plane. The second interpolation provides environmental data at arbitrary points in the 
vertical plane so that ray trajectories can be evaluated analytically. In particular, if the inverse 
sound speed squared is found by linear interpolation within triangular sectors, the ray trajectories 
become parabolas. The implementation used here, being somewhat different than others, is 
described in the appendix. 

The numerical implementation of geometrical spreading uses finite differences to estimate 
Azv, the increment in ray depth at constant range due to an increment in source angle A0vfi. For 
this discussion, it is sufficient to use the central differences 

Azv=(zv+l-zv_x)/2, (6) 

A0v,o=(^+1,o-0,-,,o)/2 (7) 

for v=2, 3, ..., n- 1, and 

Az, = z2 - zx, (8) 

A0lo=02ß-0hO, (9) 

A^^-V,, (10) 

A0„,o= 0^-0^ (11) 

at the endpoints. 

Later examples will demonstrate that the ocean boundaries will make the above definitions 
inappropriate for some Azv. In anticipation of these boundary-induced complications, two depths 
z^ and z^ that bound zv are now introduced. Also, set 

Azv=z™-z™. (12) 

Equation (12) will be equivalent to equations (6), (8), and (10) if the z™ and z™ are midpoints of 
the zv. That is, 

zil)=(zv_]+zv)/2 (13) 



for v=2, 3, ...,n, and 

z? = (zv+zv+l)/2 (14) 

for v= 1, 2, ..., n - 1. The remaining depths, 

z1
(,)=(3r1-z2)/2 

and 

^2)=(3*„-V,)/2, 

(15) 

(16) 

are obtained by reflecting zj2) about zi and z£1} about z„. 

Under the Nx2D and geometric-acoustic approximations, the contribution of the v-th ray 
to the total field can be estimated from 

P =rPT 
p  rAz 

Pr.vA0vfi 

-1/2 

exp(icoTv+i<£>v), (17) 

if 

z™<z<z?\ (18) 

or if 

z.(2)<z<z(1) 
(19) 

and is zero otherwise. Each nontrivial Pv corresponds to an eigenray, that is, a ray path that 
connects the source and field point. The underlying concept of classical ray theory is that the 
acoustic pressure Pc at any given field point is the coherent addition 

(20) 

ofeigenrays. The power addition 

|p|2=y|p|2 
(21) 

is a smoother representation and better suited to many practical applications. Both summations 
include all nonzero values of Pv. 



Figure 1 is deceptively simple in that there is only one eigenray per field point. In other 
words, there is only one nonzero Pv. In general, the task of identifying all the eigenrays is 
difficult, especially in a range-dependent environment. To demonstrate this fact, it is convenient 
to define ray type as the number of surface and bottom reflections and upper and lower vertices. 
For example, the primary eigenrays for an isovelocity, flat-bottom environment consist of the 
direct path, the one surface bounce path, the one bottom bounce path, the one bottom then 
surface bounce path, and the one surface then bottom bounce path, illustrated in the upper portion 
of figure 2. The upper portion of figure 3 illustrates the continuous, predictable manner in which 
the angles of these ray paths vary with field-point depth at a 0.463-km (0.25-nmi) range. 

The possible number of primary eigenrays in a range-dependent environment is unlimited, 
and the task of identifying all the eigenrays can be formidable. The lower portions of figures 2 
and 3 show how quickly the number of eigenrays can multiply just from varying the bathymetry 
for this isovelocity environment. In this example, the direct and surface bounce paths are 
unaffected, but the number of bottom bounce paths has increased from three paths to nine paths 
for the 60.96-m (200-ft) field-point depth (figure 2). The arrival angle structure (figure 3) shows 
how the number of paths changes with field-point depth. 

RANGE (m) 
200    300 500 

150 

100 
RANGE (m) 
200    300 500 

150 

Figure 2. Primary Eigenrays to a 0.25-nmi, 100-ft Field Point in an Isovelocity 
Environment: (a) Flat and (b) Range-Dependent Bathymetry 
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Figure 3. Arrival Angles vs Depth at 0.25 nmi in an Isovelocity Environment: : 
(a) Flat and (b) Range-Dependent Bathymetry 

Using the same notation as before, the amplitude of the Gaussian ray bundle is now defined 

*F = ßvjl 
1navPr.v 

-exp{-0.5[(z-zv)/c7v]
2}: (22) 

where 

ßv.O  -roPr,v,0^v,oPo (23) 

depends only on the source, and where 

<jv =-max(Azv,8A) (24) 



is an effective standard deviation or half beamwidth, and A is the wavelength at the field point. 
The factor ßvfi was chosen so that the energy within a geometric-acoustic ray tube equals the 
energy within a Gaussian ray bundle. Equation (24) was found by accident, as will be described 
shortly. 

To find eigenrays, classical ray models typically perform an iterative search on test rays or 
interpolate in range or depth between test rays. The solution is local. If equation (17) is used, a 
classical eigenray is determined from a test ray that roughly falls within Azv/2 of the field-point 
depth at the field-point range. In contrast, ray bundles are global, affecting all depths to some 
degree. It is assumed that the Gaussian eigenray amplitude is formed by the power addition 

V 

(25) 

of bundles of the same type, 
slowness pz,e, boundary phase 

The eigenray source angle Be,o, 
: shift &e, and travel time Te are 

horizontal slowness pr,e, vertical 
obtained from the weighted 

averages: 

V 

(26) 

t^r,e             e    / J      vJrrtv •> 
V 

(27) 

r z,e            e    /, -*      vrz,v •> 
V 

(28) 

V 

(29) 

f _ VLf-1'1^"' VT/  T 
e            t    / '      v   z,v ■ (30) 

To obtain a more accurate expression for travel time, the ray bundle travel time Tv is 
extrapolated to the field-point depth z by 

T,.v = Tv+piy{z-zv) (31) 

in equation (30) before the Gaussian weighting function is applied. Justification for the 
extrapolation in equation (31) is based on the relationship 

^*P,V (32) 

and figure 4. The Gaussian eigenray amplitude 



Ae=^ (33) 

and field-point angle 

/_   A 
0, = tan' 

\Pr.J 
(34) 

yield the complex valued eigenray pressure 

Pe=Aeexp(iaTe+i<!>e). (35) 

An additional complication makes it necessary to compute two weighted averages for each 
ray type. The first is the contribution from ray bundles with Azv > 0, the second with Azv < 0. 
Ray bundles must be separated in order to simulate the reversals in test ray depth versus source 
angle. These reversals are caustics that may be formed by the environment or by numerical 
approximations. In the isovelocity, flat-bathymetry case shown in figure 3, the arrival angle 
versus depth curve is monotonic for each ray type. (It was convenient to display arrival angle 
versus depth instead of test ray depth versus source angle. The two are equivalent in the 
isovelocity, flat-bathymetry case.). In contrast, the range-dependent bathymetry produces many 
reversals. 

For simplicity, the current model assumes that caustics occur at turning points. Hence, the 
ray-tracing algorithm adds -7t/2 to the phase shift @v at each upper and lower vertex. Asymptotic 
theory dictates that the eigenray phase shifts &e corresponding to the Azv > 0 and Azv < 0 
weighted averages be separated by an additional ;z/2. These assumptions are not valid in many 
environments, and the coherent predictions are subject to errors. However, since the primary 
purpose of the model is to simulate high-frequency reverberation by power addition, phase errors 
are a secondary concern. 

z 

RAY, 

Figure 4. CASS Travel Time Interpolation 



If Azy/A9v,o is slowly varying, and equation (24) is simplified to 

c7v = Azv/2 (36) 

then classical eigenrays can be approximated by Gaussian eigenrays with a high degree of 
accuracy. In other words, Gaussian eigenrays can be made as accurate as classical eigenrays. 
This claim is suggested by figure 5, which shows \PJPcf for various values of«. 

When n = 1, the ratio reduces to 

]|V = ^|-exP{-0.5[(z-z1)/a-1]
2j. (37) 

The rectangular curve in figure 5 a, 

1 if z, -Az1/2<z<z1+Az,/2 

(38) 

0 otherwise 

provides a useful comparison. Equation (23) for ßv,0 sets the area under the Gaussian curve to the 
area under the rectangular curve. 

According to equation (37), the Gaussian and rectangular curves differ by a factor of 

-Ja K « 0.80 or -1 dB at z = z\. The factor improves to 1.01 or 0.06 dB at the midpoint depth z2 

in figure 5b. Here, the contributions from three adjacent bundles are added, assuming that the 
increments in 9Vß and zvare constant. Figure 5c shows the effects of doubling the number of 
bundles from three to six by cutting the increment in 0V$ in half. Although the overall fit is 
significantly better, fluctuations in the vicinity of the midpoint depth remain at 0.06 dB. Figure 5c 
suggests that the Gaussian-induced fluctuations could be reduced by an averaging algorithm. This 
is borne out by figure 6, which averages two results. The source angles of the second are 
midpoints of the first. In short, energy is conserved in a single ray bundle, but an adequate 
description of the acoustic pressure requires the superposition of several. 

The standard deviations av must be bounded from below to prevent the amplitudes Wv from 
growing too large in the vicinity of caustics. This bound will now be estimated for a well-known 
test case developed by Pederson and Gordon (reference 10) to investigate extreme downward 
refraction. Figure 7 contains their sound speed profile and ray diagram for a 0.9144-km 
(1000-yd) source depth. The inverse sound speed squared is linear in depth, so one can express 
ray trajectories in closed form. However, the results below do not use this feature and may be 
contaminated to a small degree by numerical artifacts. It should also be noted that the example 
does not represent realistic ocean conditions in that the sound speed is too small throughout most 
of the water column. 

10 
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Figure 7. Formation of a Caustic Under Extreme Downward Refracting Conditions: 
(a) Sound Speed Profile and (b) Ray Diagram for a 0.9144-km (1000-yd) Source Depth 

Figure 8 illustrates the effect of changing the lower bound of con propagation loss for a 
0.7315-km (800-yd) field-point depth in the vicinity of the caustic at 2.89 km. Decibel levels 
were computed by coherent eigenray addition for 

o„ 

1 
max(Azv,A)      (a) 

-msK(AzvM)      (b) 

max.(Azv,47TÄ)    (c). 

max(Azv,\6A)    (d) 

(39) 

-max(Azv,32A)   (e) 

In figure 8a, ov is too small. Although bounded, the level is too high in the illuminated region to 
the left of the caustic and falls off too rapidly in the shadow zone to the right of the caustic. The 
opposite occurs in figure 8e, where ov is too large; now the decibel level is too small at the caustic 
and falls off too slowly in the shadow zone. Equation (24) is currently based on figure 8b because 
it currently gives the best overall performance near the caustic for both coherent and power 
additions. Evidence to be provided later will indicate that this remarkably simple formula is far 

13 



50 

Cü 60 
■o 

CO 
co 
o 70 

80 

m 60 
"D 

CO 

o 70 

80 

"l I I I M I ( I I I 1 I 1 I I I I t I I 1 1 I ) I I I M 1 I I t / II I I 1 I I t M I I til I I I I 1 I t I I ll I II I I I I I I 1 I 

(b)   a = AX 

60 

co 

§70 

80 

m 60 
■D 

CO 
CO 

o 70 

80 

60 

CO 

o 70 

"" " 11 II I I 1111 i n i n 1111 i i M 11 n I Mi i n 11 ill I i M ■ 111 till i i n I 

: (C)    o  =   2irA 

i ll ll i ll I M MM ml iti minlii IHM I illiitn tlliliiniiitil i nt ill nil 

(d) c z ex 

1 i 11 11 i i 1111 11 M n 1111 111 1111 11 i 11 ii ii i II111 M 1111 ■ 111 ii 1111 i ■ i ili i M 11 

(e)    a -   16A 

Q   h11111II1111M1111111111111111M11M1111M111ill1111111111M11111M1111 

2-83    2-84    2-85   2-86   2-87   2.88   2.89   2-90 

RRNGE   (km) 

Figure 8. Propagation Loss vs Range in the Vicinity of a Caustic for a 0.9144-km (1000-yd) 
Source Depth, 0.7315-km (800-yd) Field-Point Depth, and Various Lower 

Bounds of a: (a) 1/2, (b) 4k, (c) 2ick, (d) 8X, (e) 16k 

14 



more general than would be expected. Note that figures 8c and 8d are closer to the generally 
accepted answer in the vicinity of 2.86 km. Since this range is dominated by the ray that grazes 
the ocean surface, it is likely that a phase error was produced by the treatment of boundary 
reflections, which topic is treated next. 

As is customary in typical ray-tracing models, rays are attenuated at the ocean boundaries by 
appropriate reflection coefficients. The cumulative effect is contained in the pressure ratio 

Tv=Ylrs,vxYlrbv (40) 

and phase shift 

«^IXv+IXv, "   (41) 

where ft,,, and ybiV denote surface and bottom reflection coefficient amplitudes, respectively, and 
$s,v and (j>b, v are the corresponding phase shifts. Specific examples of reflection coefficients appear 
in later sections. 

The ocean boundaries impose additional requirements on the numerical computation of both 
classical and Gaussian eigenrays. Although the difficulties discussed below stem from tracing rays 
to a constant range, it is felt that the benefits of stepping in range overshadow any disadvantages. 

First consider a constant sound speed environment. The range r and field point to source 
depth z - z0 for the direct path are related by 

z-z0 =rtan#0. (42) 

Holding r constant, the differential 

dz = r sec2 0od6o (43) 

provides the lower bound 

Azv>rA0v.o (44) 

for the change in ray depth with source angle. In other words, if the angular spacing between 
tests rays is too large, there will be only one direct path at the range of interest. It will not be 
possible to compute the required increments Azv and A0 Vj0. Realistic ocean conditions create 
additional complications. 

If computer run time is not a concern, and the sound speed and bottom are well behaved, 
one can make A# v>0. sufficiently small that several rays of the same type cross the range of 
interest. The practical approach taken here uses 
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z?=z  -Az„ /2, 

z(2) - z, + Az„ / 2 
(45) 

instead of equations (13)-(16) to set the bounding depths z[' and z\', where T(2) 

Az„ :^6-^ (46) 

is the difference between the bottom and surface depths at range r. Since adjacent rays of the 
same type are unavailable, the Gaussian bundle distributes its energy normally about the central 
ray with a standard deviation of half the water column. 

It is often possible to create adjacent rays of a desired type by unfolding rays of an adjacent 
type. To demonstrate the importance of these virtual rays, consider an eigenray that is incident to 
a field point slightly above the ocean bottom as shown in figure 9. Circles along the vertical 
dashed line represent the depths at which a fan of reflected test rays cross the field point range r, 
with ray v being the closest to the bottom. Besides denoting range, the horizontal axis also serves 
to illustrate the relative amplitude of a Gaussian ray bundle that is centered at zv and has a 
standard deviation of a= \ Azv 112. The unshaded portion represents reflected energy that does 
not contribute to the incident eigenray. Unless unfolded, power due to the shaded portion will be 
lost to the bottom, and the eigenray's amplitude will be too small. By projecting the bundle along 
incident rays, it becomes clear that the shaded portion corresponds to incident energy. 

z 

.SOURCE 

T \ 

v+ 1 

'• v + 1  "* v 

Figure 9.  Creation of Virtual Rays by Unfolding Classical Rays at a Boundary 
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Except in the simplest cases, it is not clear how the virtual ray parameters 0Vfi, p'r,v, p'ZyV, 
Q?'v, T'v, ^"v should be unfolded from their real counterparts. To avoid the cumbersome task of 
adding or removing the effects of boundary reflection coefficients during the unfolding process, 
the current procedure sets 

6'vfi = #v,0> 

P'r,vO = P*r,v> 

Pz,vO = A,v» 

*> 

rv = Tv, 
*:.= = *.„ 

(47) 

where the asterisk (*) indicates a reflection about the appropriate boundary and ju is the ray index 
nearest to v such that ray ju and the eigenray are of the same type. Errors in virtual ray 
parameters increase with distance to the boundary. However, the distance from the virtual ray to 
the field point also increases, so that the effect on the eigenray decreases. 

For example, referring once again to figure 9, one sees that (p'r,v, p'z,v) are the direction 
numbers of the dashed line for ray v. The virtual ray amplitude and phase are obtained from ray 
v- 1, the direct path ray nearest to ray v. 

A few other special cases require attention. For brevity, the discussion is limited to one 
such case—nearfield propagation. For the amplitude of the Gaussian ray bundle Tyto approach 
spherical spreading as the field point (r, z) approaches (0, z0), it is necessary that the standard 
deviation 

<JV °c Azv (48) 

in the vicinity of the source. Unless equation (24) is adjusted, equation (44) indicates that the 8/1 
lower bound of ov will be invoked for short ranges, such that 

Azv        8Ä 
r< ^< . (49) 

The current adjustment replaces the SÄ in equation (24) with 

r 
mm 

m n\. (so) 
U80 

One degree or 7t/180 radians was found to work better than ABV>0 in several test cases 
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3. MODEL COMPARISONS 

This section contains two sets of propagation loss test cases. For convenience, the Gaussian 
ray bundle based computer code has been given the acronym GRAB. The first test case compares 
GRAB results with those of the Navy standards PE V3.4 (reference 6) and ASTRAL V4.2 
(reference 7) at 25 Hz and 10 kHz for a classic convergence zone. Then GRAB and the more 
academic models EFEPE (reference 8) and OASES (reference 9) are used to predict propagation 
loss at 1,000 Hz for a shallow-water environment. If GRAB compares well at these lower 
frequencies, it should also perform well above 20 kHz, the high frequencies of interest.   We begin 
with a brief overview of the comparison models. 

ASTRAL V4.2, a current Navy standard model for range-dependent environments, was 
designed for computational speed, frequencies less than 1 kHz and deep-water scenarios. 
ASTRAL bundles energy into 50-100 "shmodes" and provides a range- and depth-averaged 
intensity solution. (Shmodes are smooth mode-like functions that decay exponentially beneath 
their turning points.) The ASTRAL treatment of bottom interactions uses a weighted average of 
a reflected and a refracted path. 

The parabolic equation (PE) was introduced into underwater acoustics in the early 1970s by 
Hardin and Tappert (reference 11). They devised an efficient numerical scheme based on Fourier 
transforms. PE techniques have grown and are now popular for solving range-dependent 
propagation problems. The Navy standard PE V3.4 model, a direct descendant of the original 
Hardin and Tappert work, uses split-step Fourier transforms in depth to compute the coherent 
pressure field. Numerical aliasing and phase errors limit the types of scenarios that can be 
modeled. In particular, shallow-water environments where the bottom properties represent an 
abrupt change from the water column should be avoided. As is typical of PE models, the 
computation time and storage requirements increase with frequency. 

More robust PE solutions, such as Collins' finite element EFEPE model (reference 12) have 
been designed to bypass the split-step Fourier depth transform. This model is more accurate than 
the Navy standard PE V3.4 for bottom interacting scenarios and can treat higher angle energy. 
However, EFEPE does not incorporate volume attenuation into the water column, an important 
consideration at high frequencies. The stratified, geoacoustic bottom description must include a 
highly absorbing basement layer in order to simulate a radiation condition without introducing 
erroneous reflections. 

OASES (Ocean Acoustic and Seismic Exploration Synthesis) models seismo-acoustic 
propagation in horizontally stratified waveguides using wave number integration in combination 
with direct global matrix techniques. The model is a more robust version of SAFARI (Seismo- 
Acoustic Fast field Algorithm for Range Independent environments) (reference 13). OASES 
includes shear properties in a layered, geoacoustic bottom and eliminates aliasing problems by 
moving the integration contour onto the complex plane, i.e., introducing artificial attenuation. 

To avoid model/model comparison complications, the same submodels (surface loss, bottom 
loss, etc.) were used whenever possible. Since the bottom descriptions required by the GRAB, 
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EFEPE and the OASES model are sufficiently different, it was necessary to invoke an OASES 
option that generates a plane wave coefficient from bottom layers and implement these results into 
a GRAB bottom loss table. Range-dependent sound speed is not resolved so easily 
(reference 14). OASES, being range independent, is based on one sound speed profile. PE, 
ASTRAL, and EFEPE transition abruptly from one profile to another at user-provided ranges. 
Only GRAB models the sound speed continuously with range as described in section 2. 

3.1 CLASSIC CONVERGENCE ZONE 

GRAB predictions for a classic convergence zone were then compared with those of the 
Navy standard models ASTRAL V4.2 and PE V3.4. Both standard models should provide 
reasonable results, with PE being the more accurate of the two. The sound speed profile and ray 
trace for a 792.48-m (2600-ft) source depth and 13,716-m (15,000-ft) water depth appear in 
figure 10. GRAB, PE, and ASTRAL 25-Hz and 10-kHz propagation losses are contoured in 
figures 11, 12, and 13 respectively. 

To highlight the formation of shadow zones and caustics, GRAB, PE, and ASTRAL were 
run without volume attenuation or bottom interacting energy. The GRAB prediction used 
random phase eigenray addition, sampled range in 1.852-km (1-nmi) increments, and employed a 
±20° vertical aperture in 0.1° increments. ASTRAL also used a 1.852-km increment, while the 
full-field PE model automatically selected sampling parameters to avoid aliasing. 

SOUND SPEED (km/s) RRNGE (km) 
1.48  1.52  1.56 0  25  50  75  100 125 150 175 200 
0 

Figure 10.  Classic CZ Environment: (a) Sound Speed Profile and (b) Ray Trace 
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Figure 11. GRAB Propagation Loss Contours for Classic CZ Environment: 
(a) 25 Hz and (b) 10 Hz 
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Figure 12. PE Propagation Loss Contours for Classic CZ Environment: 
(a) 25 Hz and (b) 10 kHz 
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Figure 13. ASTRAL Propagation Loss Contours for Classic CZ Environment: 
(a) 25 Hz and (b) 10 kHz 
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Figure 14 displays GRAB, PE, and ASTRAL propagation loss versus range for a 792.48-m 
(2600-ft) receiver. Although GRAB was not designed for frequencies as low as 25 Hz, the model 
tracks the general trend very well and maintains the energy levels in the tails of the caustic. Table 
1 compares the computation times of each model using a 50-MHz 386 IBM personal computer. 
A large percentage of the GRAB computation time is a result of input/output operations. 

Table 1. Comparison of Computation Times 

Model 
Computation Time 

25 Hz 10kHz 
GRAB 4.5 minutes 4.5 minutes 
PE 6 seconds 26 hours 
ASTRAL 5 seconds 5 seconds 

3.2 SHALLOW-WATER ENVIRONMENT AT 1000 HZ 

The next set of test cases compares GRAB, EFEPE, and OASES propagation-loss 
predictions for a shallow-water environment. Due to the high-frequency computation limitations 
of EFEPE and OASES, it was necessary to baseline GRAB at 1,000 Hz. It was assumed that the 
essential physics at 1000 Hz is the same as at 20 kHz, and that differences can be attributed to 
surface, volume, and boundary losses whose accuracy is independent of the propagation model. 

For the model/model comparisons here, the environment consists of the sound speed profile 
in figure 15, a perfectly reflecting sea surface, and zero volume attenuation. The source and 
receiver depths are 30.48 m (100 ft). Since OASES is a range-independent model, predictions 
involving OASES assume a flat bottom at 152.4 m (500 ft) of all sand or all rock. After GRAB 
was baselined with OASES and EFEPE for this range-independent environment, GRAB and 
EFEPE predictions were compared for a downslope bathymetry. Ray diagrams for both cases are 
traced in figure 16. 

3.2.1 Sand Bottom 

The sand bottom parameters include a 1572-m/sec sediment sound speed, a 1.268-gm/cm3 

density, and an attenuation of 0.02 dB//l or 0.03 dB at 1,000 Hz. These yield the bottom loss 
versus grazing angle curves in the upper portion of figure 17. GRAB exercised its Rayleigh 
reflection coefficient option, while EFEPE and OASES computed equivalent plane wave 
reflection coefficients for a finite and halfspace bottom, respectively. 
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Figure 14. GRAB, PE, and ASTRAL Propagation Loss Predictions at a 2600-ft Receiver 
in a Classic CZ Environment: (a) 25 Hz and (b) 10 kHz 

28 



SOUND SPEED (m/s) 
1480  1500  1520 
0 

50 - 

Ü_ 
LÜ 
O 

100 - 

150 - 

200 

Figure 15. Shallow- Water Environment Sound Speed Profile 

EFEPE and OASES propagation loss predictions are compared in figure 18. The EFEPE 
prediction used a 0.1-m depth mesh and a 1.5-m range step. Input phase velocities for the 
OASES wave number integrand spanned 1,000 to 8,000 m/sec, with the latter producing a 1.1-m 
range step. Although the EFEPE and OASES range steps are different, the two results are nearly 
identical. 

Figure 19 compares the coherent GRAB prediction with the EFEPE prediction of figure 18. 
The GRAB range step is 10~m and its aperture is ±80° with test rays every 0.1°. The coherent 
GRAB levels differ from the EFEPE levels (and hence the OASES levels) by less than 1 dB at 
most ranges. Note the exceptional agreement between interference patterns. 

3.2.2 Rock Bottom 

The rock bottom is described by a 3750-m/sec sound speed, a 0.02-dB//l attenuation, and 
2.5-gm/cm0 sediment density. GRAB, EFEPE, and OASES bottom loss functions for a rock 
bottom are shown in the lower portion of figure 17. Note that the sand bottom losses for grazing 
angles beyond 20 are highly attenuated, while propagation over rock is strong for grazing angles 
up to 80°. In this test case, an 80° source angle interacted with the bottom 50 times in 2.6 km. 
Thus, small differences in the bottom description become significant. 
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Figure 16. Shallow-Water Environment Ray Trace: (a) Flat 152.4-m (500ft) and 
(b) Downslope Bathymetry 
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Figure 17. Bottom Forward Reflection Loss vs Angle at 1 kHz: (a) Sand and (b) Rock 

Figure 20 illustrates the GRAB random and coherent propagation loss predictions with a 
1.1-m range step and a ±80° aperture sampled every 0.1°. Because angles up to 80° are now 
important, the interference pattern is more complicated than it was for the sand bottom. To make 
meaningful comparisons, the intensity is averaged over a 0.1852-m (0.1-nmi) sliding range 
window. Figure 21 displays the results every 0.01852 m (0.01 nmi). As in the sand bottom case, 
EFEPE was run with a depth mesh of 0.1 m and a range step of 1.5 m, and the OASES range step 
for the phase velocity interval 1000 to 8000 m/sec is 1.1 m. Even with its better phase modeling, 
EFEPE results have phase errors due to high propagation angles. Nevertheless, the differences 
among the range-averaged GRAB, EFEPE, and OASES predictions are small. 
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Figure 18. EFEPE and OASES Propagation Loss Predictions at 1 kHz for a Flat, 
Sandy Bottom 
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Figure 19. Coherent GRAB and EFEPE Propagation Loss Predictions at 1 kHz for a 
Flat, Sandy Bottom 
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Figure 20. GRAB Random and Coherent Propagation Loss Predictions at 1 kHz 
for a Flat, Rocky Bottom 
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Figure 21. GRAB, EFEPE, and OASES Range-Averaged Propagation Loss Predictions 
at 1-kHzfor a Flat, Rocky Bottom 
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3.2.3 Rock to Sand for Variable Bottom Depth 

The actual scenario that prompted this series of tests was a downslope run where the 
bottom properties changed from rock to sand. Figure 16 shows that the slope redirects energy 
away from the surface duct. OASES is no longer applicable in this range-dependent environment, 
and GRAB must be baselined with EFEPE predictions. 

First consider the effect of the slope with an all sand bottom. Figure 22 shows GRAB 
propagation loss contours for the flat 152.4 m and downslope bathymetries. As the ray trace 
figure 16 indicates, the overall levels at the 30.48-m receiver are lower when the bottom slopes 
downward. 

Note that the coherent propagation losses at the 30.48-m receiver predicted by EFEPE and 
GRAB in figure 23 transition from rapid fluctuations over the rock bottom to slower fluctuations 
over sand. Little difference is seen in propagation loss levels over the rock (where the bottom is 
still relatively flat), but significant differences are seen between models over the sloping sand 
bottom at 2.315 km. Figure 24 compares 0.01852-m range-averaged EFEPE and GRAB 
predictions with the random phase GRAB prediction. 

Figure 25 shows coherent and random GRAB predictions at 21 kHz without volume 
attenuation. The 1-kHz and 21-kHz predictions are similar because the bottom loss is nearly the 
same for the two frequencies, and neither has surface or volume losses. Thus, the comparison 
illustrates how energy is distributed in the water column. The higher interference rate at 21 kHz 
gives rise to rapid, coherent 15-dB fluctuations. In many applications the random addition 
provides a more robust measure of the propagation loss. 
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Figure 22. GRAB Propagation Loss Contours at 1 kHz for a Sandy Bottom: (a) Flat 
and (b) Downslope Bathymetry 
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Figure 23. EFEPE and GRAB Propagation Loss Predictions at 1 kHz for a Rock-to-Sand 
Downslope Bathymetry 
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Figure 24. EFEPE and GRAB Range-Averaged Propagation Loss Predictions at 1 kHz 
for a Rock-to-Sand Downslope Bathymetry 
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Figure 25. GRAB Propagation Loss Predictions at 21 kHz for a Rock-to-Sand 
Downslope Bathymetry 
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4. SUMMARY AND CONCLUSIONS 

To summarize, a high-frequency propagation loss model was developed to investigate 
shallow ocean environments. The model is based on N x 2D ray tracing, Gaussian ray bundles, 
and virtual rays. The ray tracing determines ray trajectories, inclination angles and losses due to 
volume attenuation, and the ocean boundaries along numerous test rays. The Gaussian ray 
bundles replace the classical spreading loss of geometrical acoustics. The area under a ray bundle 
is chosen to conserve energy, while the algorithm for its standard deviation was derived by fitting 
results at a smooth caustic. Contributions from the tails of bundles that extend into the ocean 
boundaries are recovered by unfolding test rays into virtual rays at the appropriate boundary. 

Ray bundles that undergo the same number of surface and bottom reflections are combined 
into acoustic eigenrays. An eigenray amplitude is simply the power sum of its ray bundles. 
Weighted sums yield the remaining parameters. The random addition propagation loss at a field 
point is the power addition of all eigenrays to the point and equals the power addition of the 
contributing ray bundles. However, the coherent addition propagation loss is the coherent 
addition of all eigenrays and generally does not equal the coherent addition of the ray bundles. 

Although rigorous justification is not currently available, the Gaussian ray bundle method 
appears to be valid over a larger band of frequencies than originally intended. Its applicability is 
being established by comparison with various Navy "standards" and at-sea measurements. Results 
for the classic convergence zone and shallow-water test cases are encouraging. 

Future plans include resolving some of the more questionable aspects of the model. In 
addition to the lack of mathematical rigor, phase errors occur at turning points and caustics. As 
with many ray-tracing models, the selection of test rays is left to the user. Too few may 
jeopardize fidelity; too many may be costly. Current experience calls for vertical angle increments 
of 0.1 to 0.01°. Away from caustics, real eigenrays are not sensitive to the lower bound of the ray 
bundle standard deviation. Since imaginary eigenrays are formed by the tails of Gaussian bundles, 
and these tails depend on the standard deviation, one should expect shadow zone propagation to 
be very sensitive to the lower, bound. It is not known why the expression for the lower bound is 
so robust. 
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APPENDIX 
RAY-TRACING EQUATIONS 

Ray-tracing equations, a generalized form of Snell's Law, may be obtained from the 
equation of characteristics for partial differential equations. In rectangular (x, y, z) coordinates, 

d (   dx\    dp 

ds v   ds)    dx' 

ds v   ds)    dy ' 
(A-l) 

d(   dz\_dp 

ds v   ds)    dz 

where 

ds = y](dx)2 +(dy)2 +(dzY (A-2) 

is the differential arc length along a ray path and the sound slowness/? = c"1 is the reciprocal of 
sound speed c. By confining the rays to the vertical plane y = 0 and setting the horizontal range 
x = r, equations (A-l) reduce to 
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ds \   ds. 

ds 

dz 

\   ds. 
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(A-3) 

Multiplying these equations by,p and applying the chain rule of ordinary differential equations 
yields 
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or, equivalently, 

d(   drY 
— P— 
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dr 
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dz\   dsJ 
dp2 

dz 

(A-5) 

In practice, equations (A-5) require numerical integration. Two general approaches are in 
use. The first assumes that the sound speed is a given function of position and approximates ray 
paths by evaluating standard integration formulas. The second approach approximates the sound 
speed in sectors so that equations (A-5) can be evaluated in closed form. The former approach 
tends to be more efficient if the integration step size is smaller than the distance across sectors. 
However, because it is difficult to estimate a suitable step size for the realistic conditions 
investigated here, the latter approach was selected instead. To be specific, the r - z plane is 
divided into triangular sectors, in each of which the gradient of slowness squared is 

V dp1 dp1 

\dr ' dz) 
= constant. (A-6) 

It should be noted that the ocean sound speed depends on temperature, salinity, and 
pressure. Since the variations of temperature and salinity are small in deep isothermal layers, the 
dependence of sound speed will be nearly linear with depth because of the increase of pressure 
with depth. In this case, it may be more efficient to approximate the sound speed in sectors in 
which the sound speed gradient rather than Vp2 is constant. The approach selected here offers 
certain numerical advantages in shallow water, such as working with parabolic ray segments 
instead of circular arcs. 

Given equation (A-6), one can integrate equations (A-5) by rotating the coordinate system 
so that one component of Vp2 vanishes. The implementation used here integrates equations 

(A-5) directly to 

df\2    (   dr\2 .dp2 

(A-7) 

dz\      f   dz\ dp2 

ds)      v   dsJ c °   dz 

where the subscript (\ refers to values at the given point (rc, zc). Upon taking square roots, one 
obtains 
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'S-Jtö-fr-'.)* 
(A-8) 

dz 

"isrnv^ +(2~z«)f • 
for the horizontal and vertical components of slowness along the ray segment. It has been 
assumed that the range is strictly increasing. Also, the ± sign must be chosen so that pdzlds 
agrees with the vertical direction of the ray segment. Reversals in direction will be discussed 
shortly; for the time being, assume that there is no reversal in range or depth. Then, eliminating 
plds from equations (A-8) yields 

dr 

dr\     . fa2 
■ = +- 

dz 
r   dzY     . ^ 
p—\   + {z-zc)-F 

(A-9) 

V   ds. dz 

Since the left-hand side of equation (A-9) depends explicitly on range, while the right-hand side 
depends explicitly on depth (range and depth are related implicitly by the ray path), equation 
(A-9) may be integrated from (rc, zc) to (rd, Zd) to yield 

la- 
dr 

)— 
ds 

dr_ 

' ds 

C AJ\ 
= ±2 %> 

\ dz 

dz 
i— 

ds 

dz 
I  

ds. 
(A-10) 

Rationalizing the numerators of equation (A-10) and dividing by 2 gives 

Ar 
dsJ „   v   ds 

Az 
dz)     (   dz 

ds) „   v   ds. 
= AA, (A-ll) 

where 

Ar = rd-rc, 

Az = zd-zc, 

(A-12) 

and Ah is introduced for convenience. Note that the ± sign has been removed by the 
rationalization process. 

Two final auxiliary formulas are required. Setting (r, z) to (r^ zj) in equations (A-7) and 
using the differences of two squares, it is seen that 
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dr 
>— 
ds 

dz 
i— 

ds) 

= ,^]+A^ 
ds. dr 

(A-13) 

p—   + Ah-J— 
dsJ „ dz 

Now, suppose that rd is given but zd is currently unknown. Then, (pdrlds)d can be found 
from the first of equations (A-8), and Ah can be found from the left-hand side of equation (A-l 1). 
Given Ah, (pdz/ds)d can be obtained readily from the second of equations (A-13). This allows 
solution of equation (A-l 1) for 

Az = Ah 
dz 

>— 
ds. + P 

dz 
i— 

ds) 
(A-14) 

Similarly, if zd is given but rd is unknown, [pdztds)d can be found from the second of 
equations (A-8), and Ah can be found from the middle term of equation (A-l 1). Given 
Ah,(pdrlds)d can be obtained readily from the first of equations (A-13), and equation (A-l 1) 
yields 

Ar = Ah 4) A4 dsJ „   v   ds 
(A-15) 

This completes the case in which there is no reversal in direction. Now suppose that 

'&).>0- 
(A-16) 

but 

(*-O^<0. 
dz 

(A-17) 

To prevent the physically impossible 

ds), 
(A-18) 

the ray segment is terminated at the vertex depth zd where 
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dz 
) — 
dsJ 

f   dz)2    r ,4?2    n 
(A-19) 

That is, the ray is horizontal at (rd, zj). In the next case to be considered, the ray originates at a 
vertexing depth. Here, the vertical direction must be chosen so that 

(z-*e)^r>o. az 
(A-20) 

Finally, if both (pdz/ds)c and 4?2/^ vanish, the ray is a horizontal segment. 

A-5/A-6 
Reverse Blank 
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